Nonoscillatory Criteria for Second-Order Nonlinear Difference Equations
نویسندگان
چکیده
منابع مشابه
Oscillation criteria for nonlinear second-order difference equations with a nonlinear damped term
Sufficient conditions for the oscillation of solutions of the nonlinear second-order difference equation of the form [p(k)ψ(y(k)) y(k)] + q(k)h(y(k))g( y(k − r(k))) y(k) + f (k, y(k), y(k − s1(k)), y(k − s2(k)), . . . , y(k − sn(k))) = 0 are established. We obtain a series of results for oscillatory behaviour. © 2004 Elsevier Ltd. All rights reserved. MSC: 39A10
متن کاملOscillation criteria for second-order linear difference equations
A non-trivial solution of (1) is called oscillatory if for every N > 0 there exists an n > N such that X,X n + , 6 0. If one non-trivial solution of (1) is oscillatory then, by virtue of Sturm’s separation theorem for difference equations (see, e.g., [S]), all non-trivial solutions are oscillatory, so, in studying the question of whether a solution {x,> of (1) is oscillatory, it is no restricti...
متن کاملOscillation Criteria for Certain Third Order Nonlinear Difference Equations
Some new criteria for the oscillation of all solutions of third order nonlinear difference equations of the form ∆ a(n)(∆ 2 x(n)) α + q(n)f (x[g(n)]) = 0 and ∆ a(n)(∆ 2 x(n)) α = q(n)f (x[g(n)]) + p(n)h(x[σ(n)]) with ∞ a −1/α (n) < ∞ are established.
متن کاملOscillation Criteria for First-order Forced Nonlinear Difference Equations
where (i) {p(n)}, {e(n)} are sequences of real numbers; (ii) {qi(n)}, i= 1,2, are sequences of positive real numbers; (iii) λ, μ are ratios of positive odd integers with 0 < μ < 1 and λ > 1. By a solution of equation (1, i), i= 1,2,3, we mean a nontrivial sequence {x(n)}which is defined for n ≥ n0 ∈ N = {0,1,2, . . .} and satisfies equation (1, i), i = 1,2,3, and n = 1,2, . . . . A solution {x(...
متن کاملOscillation theorems for second-order nonlinear delay difference equations
By means of Riccati transformation technique, we establish some new oscillation criteria for second-order nonlinear delay difference equation ∆(pn (∆xn) ) + qnf(xn−σ) = 0, n = 0, 1, 2, . . . ,
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 2007
ISSN: 0035-7596
DOI: 10.1216/rmjm/1181068759